Effect of different thyroid states on mitochondrial porin synthesis and hexokinase activity in developing rabbit brain.

نویسنده

  • Jalal A Al-jamal
چکیده

Voltage-dependent anion-selective channel proteins (VDACs) are pore-forming proteins found in the outer mitochondrial membrane of all eukaryotes and in brain postsynaptic membranes. VDACs regulate anion fluxes of a series of metabolites including ATP, thus regulating mitochondrial metabolic functions. Hexokinase binds to porin. The mitochondrially bound hexokinase can greatly increase the rate of aerobic glycolysis. The activities of hexokinase and protein levels of mitochondrial porin were determined in brains of hypothyroid rabbits and in hypothyroid rabbits administered with thyroxine. Proteins were separated by electrophoresis, and the proteins of interest were quantified. Western blotting analysis revealed a significant decrease (approximately 50%) in the relative amount of porin in the hypothyroid compared with euthyroid rabbits. The changes in the developmental pattern of hexokinase activity in the brain of hypothyroid rabbits and the effect of T(4) on this enzyme activity have been investigated. Hypothyroid rabbits showed lower activity than their corresponding age-matched normal neonates. Administration of thyroxine to the hypothyroid neonates at birth abolished the effects of methimazole [1-methyl-2-mercaptoimidazole (MMI)]. These findings apparently indicate that the synthesis of the pore-forming protein and the hexokinase enzymes are under thyroid control during the fetal and the early postnatal period.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of Porin Interaction with Adenine Nucleotide Translocase and Cyclophilin-D Proteins after Brain Ischemia and Reperfusion

Objective (s) Porin is a mitochondrial outer membrane channel, which usually functions as the pathway for the movement of various substances in and out of the mitochondria and is considered to be a component of the permeability transition (PT) pore complex that plays a role in the PT. We addressed the hypothesis that porin interacts with other mitochondrial proteins after ischemic injury. Mater...

متن کامل

Involvement of porin N,N-dicyclohexylcarbodiimide-reactive domain in hexokinase binding to the outer mitochondrial membrane.

The proportion of hexokinase that is bound to the outer mitochondrial membrane is tissue specific and metabolically regulated. This study examined the role of the N,N-dicyclohexylcarbodiimide-binding domain of mitochondrial porin in binding to hexokinase 1. Selective proteolytic cleavage of porin protein was performed and peptides were assayed for their, effect on hexokinase I binding to isolat...

متن کامل

Complexes between hexokinase, mitochondrial porin and adenylate translocator in brain: regulation of hexokinase, oxidative phosphorylation and permeability transition pore.

Introduction Hexokinase I binds to the mitochondrial surface of brain [l], muscle [2], fat [3], kidney [4] and liver cells [S]. Responsibility for this association lies with a specific binding protein [6], which has been identified as mitochondrial porin in the outer membrane [7,8] and is also known as voltage-dependent anion channel W A C ) [9]. The isolated outer membrane pore, when reconstit...

متن کامل

Long-term, high-dose aspirin therapy increases the specific activity of complex III of mitochondrial respiratory chain in the kidney of diabetic rats

Introduction: One of the main mechanisms by which diabetic complications occur is an alteration of the structure and function of proteins due to hyperglycemia. Aspirin (ASA) affects cellular pathways through different mechanisms, including glycation inhibition and antioxidant activity. The aim of the present study, as a follow up to our previous one, is to investigate the effect of long-term, h...

متن کامل

بررسی اثر متابولیت‌های فنیل‌آلانین بر میزان اتصال هگزوکیناز تیپ I به میتوکندری مغز موش صحرایی

    Background & Aim: Hexokinase type I is the most predominant form of the enzyme in brain. It binds reversibly to the outer mitochondria membrane. In normal condition the major part of the enzyme binds to the membrane. Membrane bound form of the enzyme is more active than the soluble form, so this is more a control mechanism of the enzyme activity. Those metabolites that affect the binding or...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biochemistry

دوره 135 2  شماره 

صفحات  -

تاریخ انتشار 2004